Blog

Overhauled Exchange Program

3-Color OHE Logo

When you aircraft is AOG, look to TGH Aviation’s Overhaul Exchange Program to solve your problem and get you sky-bound quickly. We maintain a vast inventory of overhauled flight instruments ready to ship today to get you back in the air with the least possible down-time. We maintain stock on a wide selection of Directional Gyros, Attitude Indicators, and Turn Coordinators from Sigma Tek, RC Allen, Edo Aire, Mitchell, Mid-Continent, and many more. Make TGH Aviation your first stop and ask a sales representative today about our Overhaul Exchange stock and you’ll find that we have what you are looking for.

Below are the most frequently asked for Part Numbers – but we have hundreds more! Call us at 1(800) 843 – 4976 and get your solution shipped to you today!

parts

TGH Avionics Hangar

Hanger 51 7

TGH Avionics now performs aircraft maintenance services at our on-field hangar at the Auburn Municipal Airport in California. Our team of expert technicians are your resource for pitot-static system checks, ADS-B Installs, panel installations, autopilot troubleshooting & repair, and instrument removal, repair, and replacement. Trust your aircraft to TGH Avionics, our A and P, AI and AEA certified technicians have the experience to get the job done right. Call us today at (530) 878-5144 to set up an appointment.

Overhauled Outright Certified Program

Outright Inventory Logo 4

No Core? No problem! TGH maintains a large in-house inventory of Overhauled Certified instruments at affordable prices to get you and your aircraft back into the sky! Call our Repair Station at 1 (800) 843-4976 and speak with one of our expert sales representatives. You’ll be glad you called.

Factory New Products

Factory new Logo 9

Need it New? TGH Aviation takes prides in being an Authorized Distributor of over twenty Major Manufacturers of Aircraft Instruments and Aviation Supplies!

Your pilot supply shop is just one click away at tghairportshop.com. As an authorized dealer for manufacturers such as Garmin, Sigma Tek, United Instruments, Bendix King, David Clark, Bose, Lightspeed, and many others, we supply the best selection of aviation products that the industry has to offer. No core? No problem! We carry a huge inventory of factory new options ready to ship today. Call us and speak with one of our Sales Representatives at 1(800) 843 – 4976 and get your order started today!

012 18

TGH Aviation Celebrates 60 Year Anniversary

TGH Aviation Celebrates 60 Year Anniversary

Auburn, CA, March 30th, 2017

 

TGH Aviation, one of the most trusted and respected Part 145 Repair Stations in the industry, this year celebrates its 60th anniversary. TGH Aviation takes pride in its humble beginnings and appreciates the loyalty and dedication of both customers and employees throughout the past six decades. The company will commemorate the occasion with a number of customer appreciation specials and anniversary promotions throughout the year.

In 1957 founder Emery “Claude” Oxley Senior set out with a vision to specialize in the repair of gyroscopes for General Aviation aircraft. Claude originally began working out of his home in Riverside, California before his son Emery moved the business to a small wooden building in Auburn, California and joined forces with Chief Engineer, Rich Anderson. The early years were critical to the long term success of The Gyro House, now known as TGH Aviation. The founders built a strong infrastructure for the future by developing the TGH Aviation reputation as a top quality aircraft instrument repair facility with superior customer service.

Over the course of the last 60 years, TGH Aviation has vastly expanded its capabilities beyond gyroscopes, evolving into a diverse aircraft instrument repair facility that has become known world-wide. TGH Aviation now offers over 20,000 service capabilities, including the repair of primary flight instruments, avionics, aural warning systems, fuel flow transmitters, and their related indicators and refueling sensors. Today TGH Aviation is a valued supplier to the United States Department of Defense, NATO and a world-wide network of aviation maintenance facilities and parts brokers while still maintaining its legacy customer base of General Aviation pilots.

TGH Aviation provides outright sales, exchange sales, avionic installations and upgrades, repair services, and holds distributorships for most of the major manufacturers of the aforementioned product lines. The company’s repair shop customer base spans all areas of the industry from general aviation, corporate aviation and commercial aviation. The customer base includes airlines, parts brokers and maintenance facilities on five continents.

The past 60 years have been a hugely successful time for TGH Aviation, which now consists of a fully operational repair station, fuel lab, online pilot supply store and an avionics hangar. A veteran-owned company, TGH Aviation employs forward-thinking, growth-oriented management and all employees work to build the company reputation while improving industry presence and stature. “I am fortunate to be part of the TGH family. Here at TGH Aviation we strive for excellence in all work performed, as well as, our customer relations. I look forward to seeing what the next 60 years bring” states Hilary Coury, Sales & Marketing Manager. The company is delighted to have become a part of the local community and to have had the pleasure of working with and meeting many people over the years and look forward to continuing to build on these strong relationships in the future.

 

As TGH Aviation looks to the next 60 years the mission continues to be to provide customers with high quality products, overhauls and repairs, all delivered with premiere customer service. As one of the most trusted and respected Part 145 Repair Stations in the industry today, TGH Aviation strives to create a great customer experience each and every time.

For a complete list of capabilities, go to www.tghaviation.com for more information.

Pitot Static System…Airspeed Calculation

Pitot Static System…Airspeed Calculation

 

A.  Airspeed Calculation:

Airspeed is calculated as a function of the difference between Pitot Pressure and Static Pressure as follows:

Calculated or Indicated airspeed is indicated airspeed corrected for instrument errors, position error (due to incorrect pressure at the static port) and installation errors.

Calibrated airspeed values less than the speed of sound at standard sea level (661.4788 knots) are calculated as follows:

 

pitot picture.jpegminus position and installation error correction.

 

Where


Vc
 is the calibrated airspeed,

 

qcis the impact pressure (inches Hg) sensed by the pitot tube,

 

P0is 29.92126 inches Hg; static air pressure at standard sea level,

 

a0is 661.4788 knots:, speed of sound at standard sea level

 

Units other than knots and inches of mercury can be used, if used consistently.

This expression is based on the form of Bernoulli’s equation applicable to a perfect, incompressible gas. The values forP0and   A0_smallare consistent with the ISA i.e. the conditions under which airspeed indicators are calibrated.

Keep in mind that this is for your basic vanilla airspeed indicator and does not include calculations for TRUE Airspeed for which you must include the variables of True Temperature and True Altitude.

 

Stay tuned for upcoming Blogs

Pitot Static System…. Inside & Out

Pitot Static System ….Inside & Out

 

A. Pitot Pressure:
Pronounced: PEE-TOE, it is a French word

Pitot pressure is the measurement of the air forced into the Pitot Tube by the movement of the aircraft through the air. Pitot tubes are mounted on the aircraft facing forward so that air is forced into them. Most small aircraft have only one tube, larger aircraft have a redundant system and will have two tubes. The most common manufacturer of these tubes is Rosemont Corp. which is a division of BF Goodrich. Also on larger aircraft, those that fly at higher altitudes, the Pitot Tube is heated in order to prevent icing, smaller aircraft typically do not have this function.

The Pitot Tube is connected directly to the back of the airspeed indicator (the Pitot input) and if the aircraft is so equipped also to the Air Data Computer via a hose which is typically either plastic or rubber

 

B. Static Pressure:

Static pressure is the measurement of the ambient barometric pressure at the aircraft’s CURRENT location AND CURRENT Altitude.
The Static Port is located in a position on the aircraft that will not be affected by air flow as the aircraft moves through the air. This is typically on the side of the fuselage but can also be on the back side of the Pitot Tube or any other number of locations, it varies by the aircraft. Again smaller aircraft will typically have one Static Port, larger aircraft with redundant systems will have two.

The Static Port is connected directly to the following equipment, depending on aircraft configuration: The Airspeed Indicator (Static Input), the Altimeter, the Vertical Speed Indicator, the Altitude Encoder, the Air Data Computer. Again connection is typically made via a hose either rubber or plastic.

 

C.  Airspeed Calculation:

Airspeed is calculated as a function of the difference between Pitot Pressure and Static Pressure as follows:

 

Calculated or Indicated airspeed is indicated airspeed corrected for instrument errors, position error (due to incorrect pressure at the static port) and installation errors.

Calibrated airspeed values less than the speed of sound at standard sea level (661.4788 knots) are calculated as follows:

pitot picture.jpeg
minus position and installation error correction.

 

Stay tuned for upcoming Blogs

Overview of Capacitive Type Fuel Qty. Measuring Systems

Overview of Capacitive Type Fuel Qty. Measuring Systems

 

The Capacitive Type Fuel Qty measuring system utilizes a variable capacitive element in order to vary a precise electrical AC voltage based on the quantity of fuel in the fuel tank. The varying electrical signal, in turn, is used to drive the pointer on a fuel quantity indicator in a manner which is proportional to the amount of fuel in the tank, thereby visibly indicating remaining fuel quantity to the pilot.

The typical components in this type of system include the following

1. Signal Conditioner or Control Monitor (If not included in the
indicator
2. Tank Unit (Fuel Qty Sender, Fuel Probe)
3. Indicator                                                                                                          fule flow

 

Stay tuned for upcoming Blogs

Typical Failures in Resistive Fuel Quantity Systems

Typical Failures in Resistive Fuel Quantity Systems

 

Indicator

As previously stated the indicator in this type of system is quite simple, typically nothing more than a meter movement mounted within a case. A meter movement consists of a spool of wire mounted on a pivot and jewel housed within a frame. The frame is in fact a large powerful magnet.

As electrical current flows through the wire spool it interacts with the magnetic field of the frame causing the spool to rotate on its pivot and jewel.

 

Pivots

A pivot is nothing more than a miniature axle. A jewel is a finely ground glass cup within which the ends of the pivot are supported and allowed to rotate. Over time and with constant movement the ends of the pivot will begin to wear down similar to the point on a pencil. Eventually the pivot will become so worn that it can no longer rotate easily. It needs to be sharpened or replaced.

 

Jewels

As previously stated, a jewel is nothing more than a finely ground miniature glass cup. Glass is fragile; it breaks very easily when mishandled.  The glass also becomes worn from the pivot constantly rotating within it. Eventually the glass will become rough and will need to be re-ground or replaced.

 

Magnets

The frame of the meter movement is a large magnet. A magnet is nothing more than a piece of steel within which all of the electrons, sub-atomic particles, have been aligned within a specific pattern. Eventually the electrons move and return to their original locations according to the laws of physics. With the loss of alignment the magnet loses its magnetic power.

However while the magnet is still operating properly it, like all magnets, attracts other ferrous metals. The pivot, manufactured with ferrous metal, is in close proximity to the magnet and it is wearing down from rotating within the jewel. As the pivot wears it throws off tiny particles of metal which are attracted to the magnet. Eventually enough of these particles will become lodged between the magnet and wire spool so as to inhibit free movement of the meter. The unit needs to be completely disassembled and thoroughly cleaned.

 

TANK UNITS

 

Resistive Elements

As previously described the resistive element is subject to wear from the constant movement of the wiper across its surface. Once it is overly worn or broken it must be replaced. There is no possibility of repair

 

Floats

The floats are very often nothing more than hollow metal balls. These sometimes spring leaks. The fuel must be drained and the float must be resealed.

 

Stay tuned for upcoming Blogs

Advantages & Disadvantages of Resistive Type Fuel Systems

Advantages & Disadvantages of Resistive Type Fuel Systems

 

Advantages of Resistive Type Fuel Measurement Systems

The primary advantage of this type of system is cost. The components are very simple and therefore very inexpensive to manufacture.  A second advantage is reliability. Again these are very simple components involving very few piece parts to manufacture; the fewer parts that are involved then the less that can go wrong. The third and final advantage is that the system, while not optimal, does provide a reasonable amount of accuracy. When utilized on a small aircraft, carrying small quantities of fuel with a limited flight range the accuracy that is provided by this system is adequate.

 

Disadvantages of Resistive Type Fuel Quantity Systems

Inaccuracy due to Physics
The fuel, within the aircraft’s tanks, is subject to the laws of physics. Therefore it moves when the aircraft moves. It is affected by gravity and centrifugal force. When the aircraft banks for a turn the fuel slops to one side. When the aircraft climbs the fuel flows to the back of the tank. When the aircraft dives the fuel flows towards the front of the tank. The float is in a fixed position and can only respond to the up and down motion of the fuel. If all of the fuel has moved forward and away from the float then the float will fall down and indicate a lower amount of fuel then is currently available, conversely if the mass of fuel gathers in the area where the float is located then the float indicates a higher amount of fuel then what is actually available. Only when the aircraft is flying straight and level will the system provide an accurate report of fuel quantity. These types of inaccuracies are intolerable on a long range aircraft which is carrying thousands of pounds of fuel.

 

Stay tuned for upcoming Blogs